## Final Examination

Calculators, Mobile Telephones and Pagers ARE NOT ALLOWED

- 1 State each of the following (2 points each):
  - (a) The Intermediate Value Theorem.
  - (b) Rolle's Theorem.
  - (c) The Fundamental Theorem of Calculus.
- 2 Answer each of the following as true or false. Justify your answers(2 points each)
  - (a) If  $\int_a^b f(x) dx$  exists then f is differentiable on [a, b]
  - (b) If f is differentiable on [a, b] then  $\int_a^b f(x) dx$  exists

Each item of each of the following questions is worth 4 points.

3. (a) Evaluate

$$\lim_{x\to\infty}\frac{x^3}{x^2+\sqrt{x^4+x+1}}\sin\frac{1}{x}.$$

b) Let h be differentiable on  $(-\infty, \infty)$  and h(0) = 2 Find the constant A so that

$$f(x) = \begin{cases} \frac{h(x) - h(0)}{\sqrt{x + 1 - 1}} & -1 \le x < 0 \\ A & x \ge 0 \end{cases}$$
 is continuous at  $x = 0$ 

- 4. (a) If  $y = \sqrt{u^2 + u + 7}$  and  $u = x^2 + \frac{1}{\sqrt[3]{1 + \tan x}}$  then find  $\frac{dy}{dx}$  at x = 0
  - (b) Find the dimensions of the rectangle of maximum area whose perimeter is 100 ft.
- 5. (a) Find the area of the region bounded by the graphs of  $y^2+x-3=0$  and y-x+1=0
  - (b) The region bounded by the graphs of  $y x^2 3 = 0$ , y 3x + 1 = 0, x = 0 and x = 1 is revolved about the line x = -1. Find the volume of the resulting solid
- 6. Evaluate each of the following integrals:

(a) 
$$\int \frac{dw}{\sqrt[3]{(7-5w)^2}}$$
 (b)  $\int_0^{\frac{\pi}{4}} \frac{(1+\tan x)^3 \sec x}{\cos x} dx$ 

7. (a) Let  $f(x) = \frac{1}{\pi}\sqrt{1-x^2}$  Find c such that f(c) is the average value of f on [0,1]

(b) Let  $f(x) = \int_1^1 \sqrt{1+t^2} dt$ . Show that f(x) = 0 has exactly one solution in  $(-\infty, \infty)$